Title: Health behaviours and depressive symptoms in higher education Portuguese students

Authors: Bebiana Sabino, Vânia Loureiro, Sara Pereira, Helena Ferreira-Barbosa

Bebiana Sabino - 0000-0002-6938-292X
Vânia Loureiro - 0000-0003-2458-3004
Sara Pereira - 0009-0001-8670-357X
Helena Ferreira-Barbosa - 0000-0001-9235-3417

DOI: https://doi.org/10.5114/areh.2023.133104

To appear in: Advances in Rehabilitation

Received date: 12 July 2023
Accepted date: 20 November 2023

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting and typesetting. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Health behaviours and depressive symptoms in higher education Portuguese students

Bebiana Sabino1,A-F, Vânia Loureiro1,2,A-F, Sara Pereira1,B, Helena Ferreira-Barbosa*1,A-F

1Department of Arts, Humanities and Sports, Polytechnic University of Beja, Portugal
2ISAMB, University of Lisbon, Portugal

Abstract

Introduction: The transition to higher education and the permanence in this study cycle has implications in the students' health behaviours. They are faced with greater autonomy of choice but also with greater academic obligations that condition these behaviours. The purpose of this study is to determine which health behaviours differentiate higher education students with moderate to severe depressive symptoms from those with mild to low symptoms.

Material and methods: A cross-sectional study was conducted with 166 higher education Portuguese students (58.4% males). The health behaviours assessed were physical activity and sitting time through International PA Questionnaire - Short Form (IPAQ-SF), active choices through Active Choice Index Questionnaire, sports practice and sleeping time were assessed according to the National Dietary and Physical Activity Survey. Depressive symptoms were assessed using the Patient Health Questionnaire-9. Mann-Whitney test was used to access gender and depressive symptoms categories differences. Odds-Ratio was calculated to establish the probability of being classified with moderate to severe depressive symptoms.

Results: 24.1% students showed moderate to severe depressive symptoms. In an analysis by gender, it was found that girls spend less time sitting on average than boys (p < 0.001). Students with moderate to severe depressive symptoms show on average more sitting time (p = 0.018) and less sleep time during weekdays (p = 0.005).

Conclusions: Sitting time and sleep time are health behaviours that are associated with higher depressive symptoms in higher education students. Higher education institutions are considered to play a key role in promoting health behaviours that can interfere with students' mental health.

Keywords: Exercise, Depression, Students, Sedentary Behavior, Sleep Duration

*Correspondence: Helena Ferreira-Barbosa; Department of Arts, Humanities and Sports, Polytechnic University of Beja; email: helena.barbosa@ipbeja.pt
Introduction

The transition from adolescence to adulthood brings changes in the body, the mind and social relationships [1]. These changes are also experienced in the transition to higher education, adding emotional and psychological challenges, increased autonomy in their choices, exposure to academic pressures and increased responsibilities, which sometimes leads to unhealthy lifestyle practices [2,3].

One of the lifestyle behaviours affected by this transition is physical activity (PA). Engaging in regular PA helps to combat and prevent diseases such as cardiovascular disease, type 2 diabetes and various types of cancer [4,5]. In addition, PA also has benefits for mental health (prevention of cognitive decline and symptoms of depression and anxiety) and general well-being. Despite these benefits, 27.5% of adults and 81% of adolescents fail to meet the recommended minimums [4].

Studies targeting university students show that this age group has similar prevalence to the general population of adults [6], with a high predominance of students not meeting PA recommendations. Some studies indicate that approximately half of students do not get enough PA and these low levels of PA carry serious risks to their health [7]. A review study expose that between 30 to 50% of students are not active enough to achieve benefits for their health [8] and other point out that low PA levels tend to increase after graduation [9].

Health behaviours (HB) in higher education students are not only confined to the low levels of PA, the literature also reports high levels of sedentary behaviour [3]. High level of sitting time (ST) is a characteristic of this subgroup of population, since their daily activities involves classes or studies that require them to be seated for long periods of time [10]. The accumulation of sedentary time is associated with a greater risk of negative health outcomes [11]. As a result, the academic environment ought to assist students in adopting a healthy lifestyle by promoting initiatives and establishing techniques that can promote the development of HB that can help avoid the onset of chronic non-communicable diseases, such as mental illness [12]. Another negative HB among students in higher education is not getting enough sleep [13]. Short intervals of sleep and insomnia increase the risk of persistent mental disease [14].

Students and young adults have been found to exhibit depressive symptoms (DP) [15,16]. Students are more likely to experience stress and sadness due to an excessive academic workload and the emergence of a competitive university atmosphere [16]. Studies [17,18] have looked at HB including exercise and sedentary behaviour as potential defences against depression symptoms.
in this age range. Results, however, are still limited [18,19]. More studies are needed to determine which health behaviors may be related to elevated depressive symptoms [20].

Furthermore, it is critical to recognize that Portugal has one of the highest rates of depression prevalence in Europe [21], making it imperative to find elements that can help combat the high prevalence of depression. It is imperative to take into account the necessity of doing research using populations from rural areas, where healthcare access is more restricted and preventive measures are more crucial [22].

Thus, the purpose of this study is to determine which HB differentiate higher education students with moderate to severe DP from those with mild to low symptoms.

Materials and methods

Participants

A non-probability convenience sample was used. The sample size of the study was 166 Portuguese students attending higher education (58.4% male and 41.6% female), aged between 18 and 45 (21.57 ± 4.3) years. The Polytechnic Institute of Beja is made up of 4 Polytechnic schools, and this study only includes participants from 3 Polytechnic schools. The fact that students from the Business Polytechnic school didn't take part is due to the fact that they didn't show any interest in taking part in the day's commemorative activities. All the participants in this study are undergraduate students. Participants characteristics are shown in Table 1.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polytechnic school</td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>2 (1.2)</td>
</tr>
<tr>
<td>Education</td>
<td>97 (58.4)</td>
</tr>
<tr>
<td>Health</td>
<td>67 (40.4)</td>
</tr>
<tr>
<td>Academic year</td>
<td></td>
</tr>
<tr>
<td>First</td>
<td>88 (53)</td>
</tr>
<tr>
<td>Second</td>
<td>52 (31.3)</td>
</tr>
<tr>
<td>Third</td>
<td>26 (15.7)</td>
</tr>
</tbody>
</table>

Outcome Measures

Health Behaviours
The short version of the International PA Questionnaire - Short Form (IPAQ-SF), validated for the Portuguese population [23], was used to determine the level of PA. IPAQ-SF questions were structured to provide specific scores in the domains of walking, moderate-intensity activity, vigorous-intensity activity and ST. The PA score (low, moderate, high) was determined using the tool available on the IPAQ website [23].

Sports practice behaviours (“Do you practise any kind of scheduled leisure physical activity on a regular basis?”) and sleeping time (“How many hours do you sleep on average per day during the week?”, “How many hours do you sleep on average per day during the weekend?”) were assessed according to the National Dietary and PA Survey [24]. Regarding sleeping time, participants were asked about the duration of their sleep on weekdays and at weekends. The risk classification for ST and sleep time was ≥ 8 hours [25] and < 7 hours [26], respectively.

The active choices in the daily routine were assessed through the Activity Choice Index (ACI) previously validated for the Portuguese population [27]. This scale proposes different activities (e.g., climbing stairs instead of using the lift) that are assessed using a Likert scale ranging from 1 (never) to 5 (always). The score was given by the mean of the 6 questions and the cut-off value assumed to define the risk was the median. The cut-off point was 3 (< 3 reduced active choices).

Depressive Symptoms

Mental health was assessed through the Portuguese version of the Patient Health Questionnaire-9 (PHQ-9) scale [28]. This instrument has been validated for Portuguese university students. The scale has nine items, with responses ranging from 0 (never) to 3 (nearly every day). The depressed symptom score ranges from 0 to 27, with higher scores indicating severe depression. DP are classified as minimal 0-4, mild 5-9, moderate 10-14, moderately severe 15-19, and severe 20-27.

Procedures

The data was collected during World Physical Activity Day (April 2022), which was open to the entire educational community. Different activities were proposed for undergraduate students to take part in during lessons, one of which involved answering a questionnaire that gave rise to this research. A QRCode was available for students to fulfil the questionnaire during the activities. The questionnaire took an average of ten minutes to complete.
Before completing the questionnaire, a written consent from participants was required for participation in the study, according to the Helsinki Declaration. Ethical approval was obtained from the Ethical Committee of Polytechnic Institute of Beja (Parecer n. º 1/2021).

Statistical analysis

The Pearson chi-square test was used to identify the differences between HB (PA, sports practice, sitting time, sleep duration) and level of DP by gender and academic year. As all the continuous variables did not have a normal distribution, it was used the Man-Whitney test to assess differences between groups. The Mann-Whitney test was used to assess gender differences in the variables ST, weekly sleeping time, sleeping time weekend, ACI and DP. To assess the differences between mild to low and moderate to severe DP in HB, the Mann-Whitney test was also used. To establish the probability of being classified with moderate to severe DP the Odds-Ratio was calculated. IBM SPSS statistics version 28 (Armonk, NY: IBM Corp.) was used for analyses and the significance level adopted was 5%.

Results

Results showed that 52.4% students participate in regular sports and 66.9% report high levels of PA. During their everyday activities, 48.2% choose to engage in active behaviours. Regarding other HB, such as sleeping time our results revealed that 74.1% slept "the ideal time" during the week and 90.4% slept "the ideal time" over the weekend. The second health behaviour examined was ST, where 74.7% of the participants reported "low ST." Regarding their mental health, 75.9% of students report having mild to low DP.

The analysis of HB and level of DP by gender and academic year, is presented in Table 2 and Table 3, respectively.

Tab. 2. Health behaviours and level of depressive symptoms analysed by gender

<table>
<thead>
<tr>
<th>Variables</th>
<th>Male</th>
<th>Female</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Activity; n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-Moderate</td>
<td>46 (47.4)</td>
<td>9 (13)</td>
<td>< 0.001*</td>
</tr>
<tr>
<td>High</td>
<td>51 (52.6)</td>
<td>60 (87)</td>
<td></td>
</tr>
<tr>
<td>Sports practice; n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>34 (33)</td>
<td>54 (78.3)</td>
<td>< 0.001*</td>
</tr>
<tr>
<td>No</td>
<td>64 (66)</td>
<td>15 (21.7)</td>
<td></td>
</tr>
<tr>
<td>Sitting Time; M (±SD)</td>
<td>7.01 (4.27)</td>
<td>5.70 (4.30)</td>
<td>< 0.001*</td>
</tr>
</tbody>
</table>
Weekly sleeping time; $M(\pm SD)$

<table>
<thead>
<tr>
<th></th>
<th>1st year</th>
<th>2nd year</th>
<th>3rd year</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.27 (1.13)</td>
<td>7.22 (1.10)</td>
<td></td>
<td></td>
<td>0.560</td>
</tr>
</tbody>
</table>

Weekend sleeping time; $M(\pm SD)$

<table>
<thead>
<tr>
<th></th>
<th>1st year</th>
<th>2nd year</th>
<th>3rd year</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.51 (1.57)</td>
<td>8.73 (1.69)</td>
<td></td>
<td></td>
<td>0.392</td>
</tr>
</tbody>
</table>

Activity Choice Index; $M(\pm SD)$

<table>
<thead>
<tr>
<th></th>
<th>1st year</th>
<th>2nd year</th>
<th>3rd year</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.95 (0.84)</td>
<td>3.00 (0.89)</td>
<td></td>
<td></td>
<td>0.638</td>
</tr>
</tbody>
</table>

Depressive Symptoms; $M(\pm SD)$

<table>
<thead>
<tr>
<th></th>
<th>1st year</th>
<th>2nd year</th>
<th>3rd year</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.49 (5.19)</td>
<td>5.32 (4.40)</td>
<td></td>
<td></td>
<td>0.003*</td>
</tr>
</tbody>
</table>

*− statistically significant result ($p < 0.05$); M− mean, SD− standard deviation

Tab. 3. Health behaviours and level of depressive symptoms analysed by academic year

<table>
<thead>
<tr>
<th>Variables</th>
<th>1st year</th>
<th>2nd year</th>
<th>3rd year</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Activity; n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-Moderate</td>
<td>25 (28.4)</td>
<td>18 (34.6)</td>
<td>12 (46.2)</td>
<td>0.365</td>
</tr>
<tr>
<td>High</td>
<td>63 (71.6)</td>
<td>34 (65.4)</td>
<td>14 (53.8)</td>
<td></td>
</tr>
<tr>
<td>Sports practice; n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>51 (58)</td>
<td>31 (59.6)</td>
<td>5 (19.2)</td>
<td>0.001*</td>
</tr>
<tr>
<td>No</td>
<td>37 (42)</td>
<td>21 (40.4)</td>
<td>21 (80.8)</td>
<td></td>
</tr>
<tr>
<td>Sitting Time; $M(\pm SD)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.39 (4.59)</td>
<td>6.66 (4.26)</td>
<td>6.34 (3.57)</td>
<td></td>
<td>0.571</td>
</tr>
<tr>
<td>Weekly sleeping time; $M(\pm SD)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.95 (1.14)</td>
<td>7.56 (1.00)</td>
<td>7.63 (0.99)</td>
<td>< 0.001*</td>
<td></td>
</tr>
<tr>
<td>Weekend sleeping time; $M(\pm SD)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.55 (1.51)</td>
<td>8.73 (1.69)</td>
<td>8.54 (1.88)</td>
<td></td>
<td>0.661</td>
</tr>
<tr>
<td>Activity Choice Index; $M(\pm SD)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.08 (0.88)</td>
<td>3.0 (0.89)</td>
<td>3.3 (0.90)</td>
<td></td>
<td>0.603</td>
</tr>
<tr>
<td>Depressive Symptoms; $M(\pm SD)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.02 (5.18)</td>
<td>6.81 (4.62)</td>
<td>4.69 (4.71)</td>
<td></td>
<td>0.033*</td>
</tr>
</tbody>
</table>

*− statistically significant result ($p < 0.05$); M− mean, SD− standard deviation

The analysis of the ACI according to the DP categories is shown in Figure 1.

Fig. 1. Active Choice Index according to depressive symptoms categories
The analysis of the ST (hours) according to DP categories is shown in Figure 2.

![Box plot of sitting time (ST) for mild to low and moderate to severe depressive symptoms categories.](image)

Note: *Outliers.*

Fig. 2. Sitting time according to depressive symptoms categories

The analysis of the sleeping hours (during the weekend) according to the categories of DP is shown in Figure 3.
Fig. 3. Sleeping hours during the weekend according to depressive symptoms categories

The analysis of the sleeping hours (during the weekdays) according to the categories of DP is shown in Figure 4.

Fig. 4. Sleeping hours during the weekdays according to depressive symptoms categories

Students who have mild to low DP spend, on average, less time sitting ($p = 0.018$) and more time sleeping during weekdays ($p = 0.005$), than students who exhibit moderate to severe DP. In
the remaining HB, such as weekend sleep time or the activity choice index, there were no statistically significant differences \((p > 0.05)\) between the different classifications of DP.

Students who spend more than 8 hours sitting are 2.20 times more likely to have moderate to severe DP than those who spend less than 8 hours sitting \((OR: 2.200; 95\%CI: 1.020; 4.745)\). Students who do not meet daily sleep recommendations exhibit a 2.44 risk \((95\%CI: 1.140; 5.239)\) of having moderate to severe DP compared to students who meet these recommendations. The level of PA, the choice of active options in daily life and the practice of sports do not present a significant risk for the occurrence of moderate to severe DP.

Discussion

The aim of this research was to determine which HB differentiate higher education students with moderate to severe DP from those with mild to low symptoms. There are many behaviours that influence health. Being physically active, avoiding sedentary behaviour and sleeping the right number of hours are some of the behaviours university students should adopt.

Regarding PA, there was an increase in disrespect for a healthy lifestyle and a decline in the practice of moderate to vigorous physical exercise during the transition to university [29]. Contrary to this study, in which there is a high prevalence of students who have high levels of PA, regardless of gender and year of schooling, the literature shows that approximately half of students do not have enough PA to achieve health benefits [7,8]. However, this could be due to the sample's characteristics, which is mostly composed of sports students. According to López et al. [30], the most common reasons provided by university students include a lack of time, a dislike of PA, a lack of practicality or usefulness, feelings of laziness or apathy, or the belief that they are incompetent in this type of activity.

Studies of university students in several countries demonstrate that not only students' PA levels tend to decline [25,26], but so does their sleep duration, which is found to be of low quality [26]. In the present study, students sleep on average 7.25 h/week and 8.6 h/weekend, a duration that has been shown to be higher than other studies with this population [31]. On other hand, 25.9% of the students sleep less time than ideal, relatively lower than other studies with Chinese students [31]. There were also no differences between genders, contrary to what was identified by Lu et al. [31].

University students are a subgroup of the population that is more predisposed to accumulate excessive ST, as their main daily tasks are related to sitting activities [10]. In the present study, students spend on average 6.57 h/day, which is slightly lower than reported in other investigations.
Female students spend less time sitting compared to male students, as found in Spanish students [33].

Additional studies discuss the issue of DP among higher education students [20,34]. DP may be associated to the independence of life achieved and the change in lifestyle, affecting their academic performance and physical function [35]. The prevalence of DP in this study was lower (75.9%) than found in other studies [32,36] but similar to others [37]. DP tend to decrease with the permanence in higher education, which was verified in a study with Brazilian students [38]. The moment of transition and entry into higher education can entail greater stress for students, so first-year students may show more pronounced DP. With the adaptation to a new academic reality, anxiety and stress indices may decrease and consequently DP as well. However, in this study, the fact that the sample was mostly first-year students may be a good indicator of mental health for these students.

Sedentary behaviour is generally associated with an increase in DP [39]. Screen time (sitting time) is a predictor of DP in university students [32,40], as was observed in the present study.

Corroborating the present study results, Reardon [41] found that shorter sleep duration during the week is associated with the development of psychological problems. However, this relationship was not found for sleep duration at the weekend. Also in other studies, inappropriate sleep duration is associated with a high prevalence of DP [34]. In general, the literature shows that a sleep duration of less than 7h is related to a high prevalence of DP [34,37,42]. In the current research, despite the high prevalence (74.1%) of students who have an optimal sleep duration, those who sleep less than 7h have an increased risk of having severe to high DP. Insufficient sleep time leads to higher perceived stress, which is a risk factor for DP [43].

It is important to consider the methodological limitations of this study when interpreting the results. This is a cross-sectional study design, in which all measures were assessed by self-report. Although all the instruments included in this study were validated for the participants’ characteristics, future studies should use objective instruments, such as accelerometers, to assess PA. The sample size is small and with many students from sports sciences studies, which affects the interpretation of PA and its relationship with DP. However, the convenience sampling method was used. In future studies, in addition to increasing the size of the sample, an analysis by area of study (e.g. health sciences, sports sciences) may be included and whether it has an influence on DP. It would therefore be interesting to study the difference between students of the health sciences and education sciences. It is also thought that in future studies, it would be pertinent to include other psychological and social variables, as these can also influence health.
Conclusions

Among the HB studied, ST and sleeping time throughout the week and weekend appear to be linked with moderate to severe depressive symptoms in university students. Active behaviours, on the other hand, were not associated with the presence of depressed symptoms in university students. Higher education institutions are thought to play an important influence in promoting health practices that can harm students' mental health.

Funding

This research received no external funding.

Conflicts of interest

The authors declare no conflict of interest.

References

