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A b s t r a c t

Introduction: Noninvasive fractional flow reserve (FFR) computed from CT (FFRCT) is a novel method for determining the physio-
logic significance of coronary artery disease (CAD). Several clinical trials have been conducted, but its diagnostic performance varied 
among different trials.

Aim: To determine the cut-off value of FFR
CT and its correlation with the gold standard used to diagnose CAD in clinical practice.

Material and methods: Forty patients with single vessel disease were included in our study. Computed tomography scan and 
coronary angiography with FFR were conducted for these patients. Three-dimensional geometric reconstruction and numerical 
analysis based on the computed tomographic angiogram (CTA) of coronary arteries were applied to obtain the values of FFR

CT. The 
correlation between FFR

CT and the gold standard used in clinical practice was tested.
Results: For FFR

CT, the best cut-off value was 0.76, with the sensitivity, specificity, positive predictive value and negative pre-
dictive values of 84.6%, 92.9%, 88% and 73.3%, respectively. The area under the receiver-operator characteristics curve was 0.945  
(p < 0.0001). There was a good correlation of FFR

CT values with FFR values (r = 0.94, p < 0.0001), with a slight overestimation of FFRCT 
as compared with measured FFR (mean difference 0.01 ±0.11, p < 0.05). For inter-observer agreement, the mean  κ value was 0.69 
(0.61 to 0.78) and for intra-observer agreement the mean κ value was 0.61 (0.50 to 0.72).

Conclusions: FFR
CT derived from CT of the coronary artery is a reliable non-invasive way providing reliable functional information 

of coronary artery stenosis.
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Introduction
Coronary artery disease is more and more common in 

developed and developing countries, and has an import-
ant impact on the morbidity and mortality statistics and 
health economics worldwide [1, 2]. Diagnosis of coro-
nary artery disease is important in risk stratification and 
guides further management. Invasive coronary angiog-
raphy is the traditional method of imaging the coronary 
arteries and remains the gold standard. It detects luminal 
stenosis but provides little information about the vessel 
wall or plaques [3]. Besides, not all anatomical lesions are 
functionally significant. This has led to a wide variety of 
imaging techniques to identify and assess a flow-limiting 
stenosis. The approach to diagnosis of coronary artery 

disease is broadly based on anatomical and functional 
imaging [4].

Fractional flow reserve derived by computed tomo
graphy (FFR

CT) is an emerging noninvasive technique 
that could evaluate the functional severity of coronary 
artery stenoses. FFR

CT is defined as the fraction of dis-
tal pressure of coronary artery stenoses to that of prox-
imal pressure, which is calculated in three-dimensional 
models of the coronary tree. Several recent clinical tri-
als – De-FACTO [5], DISCOVER-FLOW [6] and NXT [7] – 
have validated this new cardiac imaging modality and 
evaluated its diagnostic performance. However, the 
cornerstone of FFR

CT is the linear relationship between 
pressure and flow under conditions of constant (and 
minimized) intracoronary resistance, as the situation 
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achieved in the measurement of invasive FFR, since they 
have the same formula and theory for calculation [8].  
In clinical practice, physicians usually use adenosine to 
achieve hyperemia during FFR measurement. In these 
three main trials investigating FFR

CT, the authors used 
computer stimulated hyperemia instead of adenosine 
during acquisition of the computed tomography (CT) im-
age, which is different from that of the real situation and 
would affect the results. Also the cut-off value of 0.80 
was applied for FFR

CT, which seems arbitrary. Moreover, 
the diagnostic performance of FFR

CT is not uniform [9] 
among the three trials, leaving space for improvement 
of this index. 

Aim
Thus, we conducted the present study to determine 

the cut-off value of FFR
CT and re-assess its diagnostic 

performance, during which adenosine triphosphate (ATP) 
was used to stimulate hyperemia before the CT scan.

Material and methods
Study population
To be included, patients had to be adults with sin-

gle-vessel disease who underwent invasive coronary an-
giography after computed tomography angiogram (CTA). 
Exclusion criteria were: a history of coronary artery by-
pass surgery (CABG); significant arrhythmia; heart rate 
> 100 beats/min; systolic blood pressure < 90 mm Hg; 
non-cardiac illness with life expectancy < 2 years; preg-
nant state; serum creatinine ≥ 1.7 mg/dl; allergy to iodin-
ated contrast; contraindication to β-blockers, nitroglycer-
in or ATP; and unstable coronary heart disease. The study 
protocols were approved by the Tongji University ethics 
committee. Written informed consent to participate was 
obtained from all patients eligible.

CT scanning
Coronary CT was performed in accordance with Society 

of Cardiovascular Computed Tomography guidelines [10].  
ATP was used for hyperemia via the large antecubital 
vein during CT scanning (140 mg/kg/min). Oral and/or i.v. 
β-blockers were used to achieve a heart rate < 60 beats/
min. Assessment of luminal diameter stenosis was per-
formed at the discretion of the local investigator using 
an 18-segment coronary model. Significant coronary ob-
struction was defied as stenosis severity > 50% in a ma-
jor coronary artery segment 2 mm in diameter.

FFR measurement
Invasive coronary angiography (ICA) was performed 

according to a  standard protocol [11]. Intracoronary 
nitroglycerine was administered before FFR measure-
ments. The FFR measurement was performed for the 
vessels with stenosis (PressureWire; St. Jude Medical, St. 

Paul, Minnesota). Coronary hyperemia was induced by 
the administration of intravenous ATP (140 mg/kg/min).  
Intracoronary pressure was measured after 2 min of ad-
enosine infusion. 0.80 was selected as the cut-off value 
for FFR.

Three-dimensional geometric model
Firstly, a sequence of CT scan images of the coronary 

artery was collected from the Dual Source Computed To-
mography scanner (Somatom Sensation and Definition 
CT, Siemens, Forchheim, Germany). The images, which 
were in DICOM format, were of the size 512 × 512 mm 
and the resolution 0.869 mm. 269 CT images in total for 
each patient were collected and the slice increment was 
1.250 mm.

Secondly, we separated coronary arteries and their 
branch vessels from myocardium and partial aorta with 
a progressive region growing technique [12]. The result-
ing binary segmentation mask enclosed the vessel lumen, 
as well as potential plaques. The segmentation mask was 
converted into a surface mesh using a marching cube al-
gorithm. This mesh, which surrounds the vessel lumen 
and plaques, is regarded to represent the lumen of the 
artery in its healthy state. The plaque was manually seg-
mented by applying a region growing technique: starting 
from a seed point within the plaque, all connected voxels 
with intensity values greater than a threshold value were 
regarded as representing the plaque. This threshold was 
determined to be 516 Hounsfield units by visual inspec-
tion of the segmentation results superimposed on the 
original data set. All voxels belonging to the plaque were 
then removed from the segmentation mask, and a sur-
face mesh enclosing the artery lumen without plaque 
was constructed. This mesh is regarded to represent the 
lumen of the artery in its diseased state. After these op-
erations, we constructed a 3D model of the coronary ar-
teries for our analysis. One of the reconstructed coronary 
arteries is shown in Figure 1.

Mathematical model
First, we chose a diseased coronary artery that had 

a lesion of moderate severity to study the model. In the 
process of studying the blood dynamics, we create a sim-
plified mathematical model. We took the coronary artery 
as an inflexible pipe, since the coronary arteries had 
attained hyperemia by administration of intravenous  
(140 μg/kg/min) ATP before CTA image acquisition; thus, 
the deformation of the coronary artery with pulse blood 
can be neglected.

Then we considered several parameters to simulate 
blood flow in the coronary artery. There are a number 
of fundamental assumptions about coronary blood 
flow used when deriving the governing equations for 
the model presented here. The studies of Perktold et 
al. [13] and Cho and Kensey [14] indicate no significant 
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influence of the shear thinning properties of blood in 
large vessels, and thus blood viscosity is assumed con-
stant and independent of vessel radius. To account for 
the nonuniform distribution of red blood cells over the 
cross section of narrower blood vessels, blood can be 
modeled as a  continuum. The distensibility of a  coro-
nary vessel wall is assumed to dominate any effects due 
to the compressibility of blood.

In summary, blood flow in coronary arteries can be 
taken as a  homogeneous and incompressible viscous 
Newtonian fluid, given by: 

∇ ⋅ U = 0� (1)
   

∂U
ρ       + ρ(U ⋅ ∇)U = –∇p + µ∇2U� (2)
   ∂t

Blood flow in coronary arteries is laminar because 
the Reynolds number [15, 16], R

e
 ≤ 2000, defined as R

e
 = 

ρVD/µ, where ρ is the density of fluid, V is the average 
velocity of fluid, D is the inner diameter of the pipe and 
µ is the dynamic viscosity of the fluid. According to fluid 
mechanics, the flow is laminar when R

e 
≤ 2000, while it is 

turbulent when R
e 
≥ 3000.

Next, we discuss the average velocity of blood flow in 
the coronary artery, namely V = C/πR2.

In this equation, C is the output of blood from the 
aorta every second and R is the radius of the coronary 
vessel, then the Reynolds number of blood can be com-
puted by R

e
 = 2Cρ/πRµ. Taking the average volume of 

blood flow (the average volume of blood flow in the left 
coronary artery is 0.75 ml, while in the right it is 0.25 ml) 
and the heart rate is 75 times per minute, the Reynolds 
number R

e
 = 72 < 2000 or R

e
 = 24 < 2000. It follows that 

the blood flow in the coronary artery is laminar at the 
entrance, though it may be disturbed in the stenotic or 
bifurcated area [17].

The viscosity and the density of blood are µ = 3.5 × 
10–3 Pa ⋅ s and ρ = 1050 kg ⋅ m–3 respectively, which is 
to mimic the blood properties in large epicardial arteries.

Finite element method
According to the three-dimensional geometric mod-

el, the finite element method was used to simulate and 
analyze the velocity and pressure of blood flow in the 
coronary artery [18–20]. The FLOTRAN 142 element was 
chosen in the software ANSYS 13.0 to compute numer-
ical results. The total number of nodes was 95,099 and 
the number of elements was 1,040,787.

The initial and boundary conditions of the blood flow 
are taken as follows: both the velocity on the arterial wall 
and the pressure on outlet boundaries are 0; the inlet 
velocity V

inletΨ (cm/s) is 6.

Statistical analysis
All statistical analyses were performed using Med-

Calc for Windows (Version 12.5; Ostend, Belgium). Con-
tinuous variables were presented as means ± SDs, and 
ordinal variables were presented as medians with inter-
quartile ranges. Statistical significance was considered 
when a p value < 0.05 was observed. Our primary results 
were the diagnostic performance of FFR

CT using invasive 
FFR as the reference, including its sensitivity, specificity, 
positive predictive value, and negative predictive val-
ue. In addition, the best cut-off value of FFR

CT to detect 
functional CAD was determined by the receiver operat-

Figure 1. Reconstructed image of right coronary artery in one of the included patients. Three-dimensional 
modeling of right coronary artery for one of the included patients. The black arrow indicates an intermediate 
stenosis in the proximal part of the right coronary artery

RCA – Right coronary artery.
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ing characteristics curve (ROC). An analysis according to 
Bland-Altman was performed [21]. Pearson statistics was 
applied to analyze the degree of correlation between FFR

 

derived by CTA and the invasive one. Moreover, inter- and 
intra-observer variability was assessed by k analysis [22].  
A  k coefficient value of less than 0.00 suggests poor 
agreement, 0.00 to 0.20 slight agreement, 0.21 to 0.40 
fair, 0.41 to 0.60 moderate, 0.61 to 0.80 substantial and 
0.81 to 1.00 almost perfect agreement.

Results 
Patients’ characteristics and statistical analysis
We included 40 patients (13 males, 27 females) who 

were admitted to the Cardiology department, Tenth 
People’s Hospital, Tongji University School of Medicine 
for analysis. As shown in Table I, the average age was 
63.7 ±9.4 years. All of them had moderate lesions (50% 
to 70%) in a  single artery (12 right coronary arteries,  
7 left main arteries, 17 left anterior descending arteries, 
4 left circumflex arteries). The mean analysis time for 
each case was 224 ±31 min.

As seen in Figure 2, the best cut-off value for FFR
CT 

seems to be 0.76, with the sensitivity, specificity, positive 
predictive value, and negative predictive value as 84.6%, 
92.9%, 88%, 73.3%, respectively. The area under the receiv-
er-operator characteristics curve was 0.945 (p < 0.0001).

There is a good correlation of FFR
CT values with FFR 

values (Pearson’s correlation coefficient = 0.94, p < 
0.001), with a  slight overestimation of FFR

CT as com-
pared with measured FFR (mean difference 0.01 ±0.11, 
p < 0.05) (Figures 3, 4). Data of one patient in our study 
population are shown in Figures 5 and 6.

For inter-observer agreement, the mean k value was 
0.69 (0.61 to 0.78) and for intra-observer agreement the 
mean κ value was 0.61 (0.50 to 0.72). 

Discussion 
In clinical practice, patients presenting with chest 

pain are common [23]. In these cases, physicians must 
determine whether the patients have coronary artery 
disease and, if so, whether the patients are at increased 
risk of future cardiovascular disease. Current guidelines 
recommend that this evaluation should be differential 
based on patient pretest risk assessment. Low-risk pa-
tients should receive only expectant management, inter-
mediate-risk patients should be referred for noninvasive 
testing, and high-risk patients should undergo invasive 
cardiac catheterization [24]. However, to date, noninva-
sive tests have performed this evaluation by taking either 
an anatomic approach such as CT angiograms to identify 
obstructive CAD [25] or a functional approach to deter-
mine ischemia by perfusion or wall motion function via 

Table I. Baseline characteristics of study popula-
tion (n = 40)

Parameter Result

Age [years] 63.7 ±9.4

Male 13 (32.5%)

Body mass index [kg/m2] 28.8 ±4.7

Cardiovascular risk factors:

Hypertension 23 (57.5%)

Diabetes mellitus 14 (35%)

Dyslipidemia 31 (77.5%)

Smoking 7 (17.5%)

Laboratory measures:

Glycated hemoglobin (%) 6.1 ±2.6

Triglycerides [mmol/l] 142.5 ±97.3

Total cholesterol [mg/dl] 210.2 ±49.1

HDL cholesterol [mg/dl] 47.7 ±12.4

Creatinine [mg/dl] 0.9 ±0.2

Vessels with lesions:

LM 7

LAD 17

LCX 4

RCA 12

HDL – High-density lipoprotein, LAD – left anterior descending artery, LCX – left 
circumflex artery, LM – left main artery, RCA – right coronary artery.

Figure 2. ROC curve for FFRCT. As shown in the ROC 
curve, 0.76 may be the best cut-off value for FFRCT 

(sensitivity = 84.6%, specificity = 92.9%)
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a variety of stress and imaging modes [26]. And for pa-
tients with moderate stenoses, risk classification is really 
a challenge for physicians [27, 28], though coronary angi-
ography is widely accepted as the gold standard investi-
gation to diagnose coronary artery disease. The catheter 
(typically no more than 2.0 mm in diameter) placed in the 
artery to create the X-ray images could lead to secondary 
damage to coronary arteries. What is more, it is highly 
subjective and does not provide any information about 
the hemodynamics of stenosis. Therefore, technologies 
that provide both a highly sensitive anatomic evaluation 
for obstructive disease and a highly specific physiologic 
evaluation for ischemia are needed for noninvasive imag-
ing for CAD. In our study, computational fluid dynamics 
was applied to calculate FFR

CT. It is a new, non-invasive 
measurement of not only the structural but also the func-
tional severity of coronary artery stenoses. Compared to 
angiography, our three-dimensional model constructed 
by CT images is non-invasive and based on computer 
analysis of the images. It takes just a little time to present 
coronary arteries by construction of a three dimensional 
model of coronary arteries in the computer, then to calcu-
late FFR

CT in the reconstructed coronary arteries.
The diagnostic value of FFRCT has been evaluated in 

several previous studies, but simulative hyperemia was 
applied in previous studies, which may affect the result 
because hyperemia is the most important precondition 
for FFR measurement. 

In our study, inter- and intra-observer agreement 
were substantial with k coefficient values of 0.69 and 
0.61, respectively, thus indicating that our model used for 
FFR

CT calculation is robust and reproducible.
To our knowledge, our study used ATP to induce hy-

peremia during CT scanning for the first time and our 

results reveal that the value of FFRCT is in good correlation 
with that obtained from invasive FFR. Thus, we can use 
the FFR

CT as a diagnostic tool in patients with moderate 
lesions in their coronary arteries to choose the suitable 
therapy. For FFR, the cut-off value is 0.80 [29], while the 
best cut-off value for FFR

CT is 0.76 according to the ROC 
curve (Figure 2). This is in accordance with a  previous 
study [30]. That is to say, stenoses with an FFR

CT mea-
surement of < 0.76 are almost invariably able to induce 
myocardial ischemia and further invasive examinations 
such as angiography are needed for these patients, while 
stenoses with FFR

CT ≥ 0.76 may not be responsible for car-
diac ischemia. However, the prognostic value of FFRCT in 
CAD remains to be studied.

Figure 3. Correlation between FFRCT and FFR. 
A  good correlation of FFRCT to FFR is observed 
(Pearson correlation coefficient r = 0.94, p < 0.001)
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Figure 4. Bland-Altman plot of FFR and FFRCT. 
A  slight systematic overestimation of compu-
tation of fractional flow reserve from FFRCT as 
compared with FFR is observed (mean difference: 
–0.01, standard deviation: 0.11, p < 0.05)
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Figure 5. FFRCT derived from the CTA in the same 
patient as Figure 1. Distribution of blood pressure 
in the reconstructed right coronary artery as in 
Figure 1 was analyzed and the value of FFR

CT was 
0.82 for the lesion in this patient
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Figure 6. Invasive FFR measurement for the same patient as Figure 1. The value of invasive FFR is 0.84 for the 
lesion in the same patient as Figure 1, nearly equal to the value of FFRCT, which indicated that the stenosis was 
not functionally important
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There were also some limitations in our study. First, 
the coronary arteries were reconstructed from the CT 
data. We actually did not have every lay of the coronary 
artery during the CT scan, so the reconstructed coronary 
arteries are not strictly same as the real-life ones. Second, 
in human coronary arteries, vessel walls are elastic and 
undergo a considerable degree of geometric deformation 
during each cardiac cycle due to the contraction and re-
laxation of cardiac muscle. However, because most blood 
flow in coronary arteries occurs during the diastolic peri-
od of the cardiac cycle when both the heart and coronary 
arteries are fairly well inflated and stretched close to their 
maximum sizes and ATP was used to achieve hyperemia 
during CT images acquisition, it was assumed that the 
flow patterns in coronary arteries are not affected signifi-
cantly by the elastic nature of the vessel wall. Finally, we 
only included patients with single coronary artery steno-
sis. The diagnostic performance of FFRCT needs to be test-
ed in a wider spectrum of diseases such as multivessel 
coronary artery disease, diffuse and serial diseased le-
sions, bifurcation lesions, in-stent restenosis, etc., before 
it can finally enter clinical application.

Conclusions
FFRCT derived from CT of the coronary artery is a re-

liable, non-invasive way of providing reliable functional 
information of coronary artery stenosis.
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