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Abst rac t

Introduction: Convolutional neural networks gained popularity due to their ability to detect and classify objects in 
images and videos. It gives also an opportunity to use them for medical tasks in such specialties like dermatology, 
radiology or ophthalmology. The aim of this study was to investigate the ability of convolutional neural networks 
to classify malignant melanoma in dermoscopy images.
Aim: To examine the usefulness of deep learning models in malignant melanoma detection based on dermoscopy 
images.
Material and methods: Four convolutional neural networks were trained on open source dataset containing der-

results achieved by every single network. 
Results: The best convolutional neural network achieved on average 0.88 precision, 0.83 sensitivity, 0.85 F1 score 

Conclusions: 
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Introduction

Early detection of malignant melanoma – one of the 
most aggressive skin tumours – plays a key role in reducing 
mortality due to this neoplasm. The increase in melanoma 
morbidity is observed all over the world, especially in the 
Caucasian population [1, 2]. One of the most important 
prognostic factors in patients with malignant melanomas 
is the tumour thickness, histologically assessed according 
to the Breslow scoring system. The 5-year survival rate for 
patients with stage IA (with tumours less than 1 mm thick) 
is above 90%, whereas for patients with tumours thicker 
than 4 mm is far less satisfactory [2, 3]. Even though a dy-
namic development of a number of novel anti-cancer im-
munotherapies has been observed in recent years leading 

-
tients with advanced malignant melanoma, still many pa-
tients die due to this malignancy [4, 5]. Thus, detection of 
the tumour in the primary stage remains crucial for patient 

prognosis. A large number of early malignant melanomas 
are asymptomatic, and frequently they do not arouse any 
suspicion among patients, even though they are usually 
visible to the naked eye. The early detection of malignant 
melanoma is often possible with the help of dermoscopy, 
but the accuracy of this diagnostic technique relies on the 

-
ods might help clinicians in faster malignant melanoma 

-
ed lesions and other malignancies. Convolutional neural 
networks have increased performance in computer vision 

being even able to outperform humans [6, 7]. Here, we 
have tested various convolutional neural networks as an 

-
mours. 
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Aim

The aim of this study was to evaluate the accuracy of 
deep learning models in malignant melanoma detection 
based on dermoscopic images.

Material and methods

Dataset

The dataset used in this study was extracted from 
“ISIC 2018: Skin Lesion Analysis Towards Melanoma De-
tection” grand challenge [8, 9]. Authors of HAM10000 
dataset also provided supplementary data about the 
origin of the lesion with a unique identifier. Based on 

training-test data leakage. The diagnosis of all skin le-

reference to the information provided in the dataset  
[8, 9]. This dataset had a total of 10015 images assigned 
to one of the following categories with a given quantity: 
1. Melanoma – 1113 images,
2. Melanocytic nevus – 6705 images,
3. Basal cell carcinoma – 514 images,

-
cinoma) – 327 images,

5.  Benign keratosis (solar lentigo/seborrheic keratosis/
lichen planus-like keratosis) – 1099 images,

7. Vascular lesion – 142 images.
For training, monitoring and evaluating models we 

proportionally split the dataset into following parts: 
1. Training dataset – 8123 images,
2. Validation dataset – 886 images,
3. Test dataset – 1006 images.

Distribution of skin lesion types across datasets can 
be found in Table 1.

Convolutional neural network (CNN)

Deep learning is a class of machine learning algo-
rithms which uses multiple layers to progressively extract 
higher level features from the raw input, e.g. in image 

processing, lower layers may identify edges, while high-
er layers may identify the concepts relevant to a human 
such as digits or letters or faces [10, 11]. Those models 
can learn – without explicit programming – different 
features at multiple levels of abstraction directly from 
data [10]. The CNN is a variant of a deep learning model 
widely used for image processing in which core operation 
is performed by a convolutional layer. A convolution is 

which results in an activation. Repeated application of 
the same filter to an input results in a map of activa-
tions called a feature map, indicating the locations and 
strength of a detected feature in an input (e.g. an image). 

are applied over the input data to extract features [10]. In 
our experiments, a batch normalization layer was insert-

linear unit activation function [11]. Batch normalization is 
a technique for improving the speed, performance, and 

Models

-
ture, we used ResNet-101 [12] and its variations – ResNeXt 
[13], SE-ResNet, SE-ResNeXt [14]. ResNet-101 is built with 33 
residual blocks as shown in Figure 1 A and, in total, consists 
of 100 convolution operations. Residual blocks introduce 
a shortcut connection. The shortcut connection adds iden-
tity mapping between the input of the residual block and 
its output. The architecture of the residual block showed 
a positive impact on training deeper CNNs.

ResNeXt introduces new hyperparameter – cardinality, 
which can be achieved by a grouped convolution operation 
as shown in Figure 1 B. This operation divides the input into 
32 groups. This is equivalent to performing 32 smaller con-
volution operations side by side. 

Squeeze and excitation (SE) networks (SE-ResNet, SE-
ResNeXt) are built on that idea with an additional opera-
tion block (Figure 1 C) to increase sensitivity to descriptive 
features. 

Table 1. Distribution of skin lesion types across training, validation and test datasets

Type of skin lesion Training dataset Validation dataset Test dataset Total number

Malignant melanoma 896 (11.0%) 103 (11.6%) 114 (11.3%) 1113 (11.1%)

Melanocytic nevus 5446 (67.0%) 589 (66.5%) 670 (66.6%) 6705 (66.9%)

Basal cell carcinoma 416 (5.1%) 46 (5.2%) 52 (5.2%) 514 (5.1%)

Actinic keratosis/Bowen’s disease (intraepithelial carcinoma) 264 (3.3%) 33 (3.7%) 30 (3.0%) 327 (3.3%)

Benign keratosis (solar lentigo/seborrheic keratosis/lichen 

planus-like keratosis)

896 (11.0%) 92 (10.4%) 111 (11.0%) 1099 (11.0%)

94 (1.2%) 10 (1.1%) 11 (1.1%) 115 (1.1%)

Vascular lesion 111 (1.4%) 13 (1.5%) 18 (1.8%) 142 (1.4%)

Total number 8123 (100%) 886 (100%) 1006 (100%) 10015 (100%)
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Ensemble of CNNs

At the end of our experiments, we have combined all 

CNN models as a stacked ensemble [15] to test whether the 

achieved prediction of malignant melanoma could be further 

improved. Output produced by this method was calculated 

by averaging all predictions of CNNs as seen in Figure 1 D.

Training

A good practice is to use transfer learning when faced 

with CNN training on a small dataset. We have used mod-

els, which have been already pre-trained on ImageNet da-

taset [6], which has 1000 object classes. To adapt it for our 

needs, the last fully connected layer consisting of 1000 

output nodes was removed and replaced with a fully con-

nected layer with 7 output neurons. On the product of the 

last fully connected layer, a softmax activation function 

was applied. Each of those models was trained on the 

training dataset with Adam optimizer [16]. To work with 

the imbalanced dataset, weighted cross-entropy loss func-

tion was utilized, in which weights were equal to inverse 

cardinality in the training dataset. As most of the images 

in our dataset had lesions located in the centre of the 

image, during training an input image of 600 × 450 size 

was augmented by random rotation by 180°, and image 

centre was cropped to 300 × 400 size in order to cut out 

black or skin background. Finally, each image was resized 

to 224 × 224 which is the input size of a CNN. CNNs were 

trained up to 20 epochs. If the network started to show 

was stopped. Continuation of the training could result in 

set, but this outcome was not desired, as next the CNN 
would not generalize well on the test dataset. 

Evaluation

To measure the performance of the algorithm we 

(1) and area under the receiver operating curve (AUC) on 
the test dataset. F1 score was calculated as a harmonic 
mean of precision and sensitivity according to the for-
mula: 

                             1                                2TP
F1 = 2 × ––––––––––––––––––––––––– = –––––––––––––––––
                      1                     1         2TP + FP + FN 
              –––––––––––  + ––––––––––––––
               Precision           Sensitivity           

where TP = true positives, FP = false positives, FN = false negatives. 

Visual explanation

model, Grad-CAM was used [17]. This method allowed 
us to visualize which regions, according to CNN, were 
the most important for given class prediction. Grad-CAM 
produces heatmap that can be overlaid over the tested 
image. The area coloured in red corresponds to the high-
est score of activation of the CNN, which potentially de-

Figure 1. Example of a residual block (A
channels by 4 and the last one restores it to C channels. ResNeXt block (B). SE-ResNet block (C), where residual block can 
be a block from (A) or (B). D – Scheme of the ensemble of CNNs
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termines the membership of the appropriate category of 

skin lesions, whereas the light blue colour indicates the 

In addition, we present Guided Grad-CAM, which shows 

in detail the most distinctive features, based on which 

Software list

The software with given versions used in the current 

study is listed below:

Python 3.6.

PyTorch 0.4.1.

NumPy 1.15.

Pandas 0.23.4.

Scikit-learn 0.19.2.

Pillow 5.2.0.

Results

Evaluation of CNNs 

After training, the results of each CNN was evaluated 

as described above their average metrics were compared 

between models. 

All of the examined neural networks achieved the 

best precision, sensitivity and F1 score in the evaluation of 

melanocytic nevi, which can be explained by the fact that 

they accounted for the vast majority of lesions in the train-

-

vus detection achieved the lowest score in all CNN com-

pared to other calculated parameters (Table 2). Regarding 

malignant melanoma assessment, the ResNeXt appeared 

to be superior, achieving the best precision, sensitivity and 

F1 score, followed by ResNet which precision was lower by 

0.01 and sensitivity by 0.02 than in ResNeXt. SE-ResNet 

and SE-ResNeXt scored 0.05 and 0.07 fewer precision 

points compared to the best model, respectively (Table 2). 

Based on average metrics, ResNeXt again turned out 

to be the best among all the analysed CNNs (Table 2). 

However, ResNet matched ResNeXt regarding average 

sensitivity. 

Despite the fact that ResNeXt turned out to be the 

best tested model, we observed misclassifications of 

malignant melanoma by this model in reference to other 

images of malignant melanoma by ResNeXt was 28%, 

-

ral networks. The remaining ones were improperly diag-

nosed not only by ResNeXt, but also by other CNNs. The 

considerable number of false negative results of malig-

nant melanoma image prediction were melanocytic nevi 

or benign keratoses. 

-

melanoma prediction. However, sensitivity remained 

similar with this model as shown in Figure 2 A. The nor-
malized confusion matrix is presented in Figure 2 B.

Visual explanation

Based on Grad-CAM activation heatmaps we have 
shown how ResNeXt learned to distinguish skin lesion 
from unaltered skin (Figure 3). Figures 3 A and B demon-

(Figure 3 A) and malignant melanoma (Figure 3 B). On 
-

noma with melanocytic nevus as shown in Figure 3 C. 
Presumably, the spatial size of skin lesion as well as its 
colour may have an impact on the accurate assignment 
of the lesion type. Likewise, zoom, lighting, and angle of 
dermatoscopic images taken might be important factors 
that contribute to malignant melanoma prediction, as 

Discussion

Crucial factors of the correct malignant melanoma 
diagnosis include clinical experience and proper train-
ing of physicians. As shown by Haenssle et al. [18], the 

malignant skin lesions from benign ones. For the needs 
of that research, an international group of 58 derma-
tologists, which included 30 experts in the field, were 
involved. In the level-I study, physicians had to make 
a diagnosis only based on dermatoscopic images. The 

receiver operating characteristic curve (ROC AUC) com-
pared to ROC area of 0.79 (p < 0.01) for all dermatolo-
gists. As in real life clinicians usually have more informa-
tion about the patient condition, in the level-II study, 
dermatologists were provided with an extra close-up der-
moscopy image and additional clinical information (age, 
sex and body site). In the second study, the mean ROC 
area for all dermatologists increased to 0.82, but was still 
lower than CNN. Based on these experiments, we do be-

from an aid of CNN, which can give a supportive opinion 
while diagnosing a suspicious pigmented skin lesion, al-
though CNN cannot replace a well-skilled physician. 

Additionally, Yap et al. [19] showed that there is a pos-
sibility to combine CNN trained on dermatoscopic im-
ages with another CNN trained on macroscopic images. 

lesion types: melanocytic nevus, malignant melanoma, 
basal cell carcinoma, squamous cell carcinoma, and pig-
mented benign keratosis. Based only on one image type, 

±0.01 and 0.707 ±0.01 accuracy for macroscopic and der-
matoscopic images, respectively. However, when they 
were combined, their accuracy increased to 0.721 ±0.007. 
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Despite the fact that the accuracy of macroscopic CNN 
alone is worse than the one trained with dermatoscopic 
images, their combination had a positive impact on the 
diagnosis. However, to implement such systems in real 
life scenarios, it requires additional macroscopic image 
dataset for CNN. 

Access to medical databases is a limiting factor for CNN 
development, because they require collection of personal 
data and, as a result, usually they are not freely available 
for the public. Preparation of such dataset takes time and 
the proper labelling of skin lesions on the images requires 
expert knowledge. The HAM10000 dataset [8, 9], which was 

Table 2. Results of precision, sensitivity, F1 score and specificity for ResNet, ResNeXt, SE-ResNet and SE-ResNeXt in 
classification of each disease

Skin lesion Precision Sensitivity F1 score AUC (ROC)

ResNet:

  Malignant melanoma 0.76 0.70 0.73 0.97 0.96

  Melanocytic nevus 0.95 0.96 0.95 0.89 0.98

  Basal cell carcinoma 0.86 0.85 0.85 0.99 1.00

  Actinic keratosis/Bowen’s disease 0.72 0.77 0.74 0.99 0.99

  Benign keratosis 0.79 0.80 0.80 0.97 0.97

0.9 0.82 0.86 1.00 0.98

  Vascular lesion 0.94 0.89 0.91 1.00 1.00

  Average 0.85 0.83 0.84 0.97 0.98

ResNeXt:

  Malignant melanoma 0.77 0.72 0.74 0.97 0.95

  Melanocytic nevus 0.95 0.96 0.96 0.90 0.98

  Basal cell carcinoma 0.85 0.9 0.88 0.99 0.99

  Actinic keratosis/Bowen’s disease 0.84 0.70 0.76 1.00 0.99

  Benign keratosis 0.79 0.81 0.80 0.97 0.98

1.00 0.73 0.84 1.00 1.00

  Vascular lesion 0.95 1.00 0.97 1.00 1.00

  Average 0.88 0.83 0.85 0.99 0.99

SE-ResNet:

  Malignant melanoma 0.72 0.69 0.71 0.97 0.96

  Melanocytic nevus 0.94 0.94 0.94 0.88 0.97

  Basal cell carcinoma 0.78 0.90 0.84 0.99 0.99

  Actinic keratosis/Bowen’s disease 0.85 0.57 0.68 1.00 0.98

  Benign keratosis 0.75 0.78 0.77 0.97 0.97

0.89 0.73 0.8 1.00 0.98

  Vascular lesion 0.94 0.89 0.91 1.00 1.00

  Average 0.84 0.79 0.81 0.97 0.98

SE-ResNeXt:

  Malignant melanoma 0.70 0.67 0.68 0.96 0.95

  Melanocytic nevus 0.95 0.95 0.95 0.90 0.97

  Basal cell carcinoma 0.82 0.87 0.84 0.99 0.99

  Actinic keratosis/Bowen’s disease 0.73 0.53 0.62 0.99 0.98

  Benign keratosis 0.74 0.83 0.78 0.96 0.97

0.89 0.73 0.80 1.00 0.99

  Vascular lesion 0.89 0.89 0.89 1.00 1.00

  Average 0.82 0.78 0.79 0.97 0.98
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Table 3. Differences in the classification of various images by analysed CNNs. Correctly classified malignant melanomas 
on images were marked in green, whereas incorrect predictions were highlighted in red

Image ResNet ResNeXt SE-ResNet SE-ResNeXt

Malignant melanoma Melanocytic nevus Malignant melanoma Malignant melanoma

Malignant melanoma Melanocytic nevus Melanocytic nevus Melanocytic nevus

Malignant melanoma Melanocytic nevus Melanocytic nevus Malignant melanoma

Malignant melanoma Benign keratosis
Benign

keratosis
Malignant melanoma

Malignant melanoma Melanocytic nevus Malignant melanoma Melanocytic nevus

Malignant melanoma Benign keratosis Basal cell carcinoma
Benign

keratosis

Melanocytic nevus
Benign

keratosis
Malignant melanoma Melanocytic nevus

Melanocytic nevus Melanocytic nevus Melanocytic nevus Malignant melanoma

Malignant melanoma Melanocytic nevus Malignant melanoma Melanocytic nevus

Malignant melanoma Benign keratosis Malignant melanoma Malignant melanoma

Malignant melanoma Benign keratosis
Benign

keratosis

Benign

keratosis
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Image ResNet ResNeXt SE-ResNet SE-ResNeXt

Malignant melanoma Melanocytic nevus Melanocytic nevus Melanocytic nevus

Benign

keratosis
Benign keratosis

Benign

keratosis
Malignant melanoma

Melanocytic nevus Melanocytic nevus Malignant melanoma Melanocytic nevus

Benign

keratosis
Melanocytic nevus Malignant melanoma

Benign

keratosis

Table 3. Cont.

MEL – malignant melanoma, NV – melanocytic nevus, BCC – basal cell carcinoma, AKIEC – actinic keratosis/Bowen’s disease,  

Figure 2. A – Comparison of scores at malignant melanoma prediction between ResNet, ResNeXt, SE-ResNet, SE-ResNeXt 
and ensemble of all convolutional neural networks. B – Normalized confusion matrix of the ensemble 

Predicted label

 MEL 0.72 0.19 0.02 0.00 0.07 0.00 0.00

 NV 0.03 0.96 0.00 0.00 0.01 0.00 0.00

 BCC 0.00 0.04 0.00 0.02 0.04 0.02 0.00

 AKIEC 0.00 0.07 0.03 0.73 0.17 0.00 0.00

 BKL 0.02 0.10 0.00 0.04 0.85 0.00 0.00

 DF 0.09 0.18 0.00 0.00 0.00 0.73 0.00

 VASC 0.00 0.00 0.06 0.00 0.00 0.00 0.94

Confusion matrix
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e
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used in our research, is relatively new and small compared 
to other ones commonly used in computer vision challenges 
(ImageNet [6], MS COCO [7], etc.). This dataset was highly 
imbalanced between classes, which may have an impact on 

however, despite this limitation, a huge number of images 
was an attractive and valid dataset for performing our ex-
periments. Gathering more images to this dataset might 
help to overcome some problems we have faced, such as 

zoom and lighting of taken pictures (for details see Figure 3). 
This could also decrease the bias towards overrepresenta-
tion of melanocytic nevi, which had been encountered dur-
ing training. Overall, having a better image database could 
aid researchers in developing a more robust algorithm that 
generalizes well over new skin lesion images. 

Last but not least, the question arises whether der-
matologists will be willing to use an artificial neural 
network, because of its opacity. Deep learning models 
have low interpretability, thereby they are often called 

A B
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explain CNN prediction for the given image via a saliency 
map. Utilizing it or another similar method in a comput-
er system might give dermatologists an insight which 
features of skin lesion were important for the particular 

Conclusions

Our research showed that deep learning models had 
achieved satisfactory accuracy in malignant melanoma de-
tection in dermoscopy images. In future investigations, one 
should focus on a better understanding of CNN predictions. 

Figure 3. A B -
noma. C
D

A

C

B

D
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