
Current issue
Archive
Manuscripts accepted
About the journal
Editorial board
Reviewers
Abstracting and indexing
Contact
Instructions for authors
Publication charge
Ethical standards and procedures
Editorial System
Submit your Manuscript
|
4/2025
vol. 39 Original paper
Validation of LEXO® end-effector robot-assisted training in patients with gait deficits after central nervous system diseases: a descriptive cross-sectional study
Adv Rehab. 2025; 39(4): 1-15.
Online publish date: 2025/06/17
Article file
- Sánchez-Cabeza_2025_09_05.pdf
[0.30 MB]
ENW EndNote
BIB JabRef, Mendeley
RIS Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
1. de Rooij IJM, van de Port IGL, van der Heijden LLM, Meijer JWG, Visser-Meily JMA. Perceived barriers and facilitators for gait-related participation in people after stroke: From a patients’ perspective. Physiother Theory Pract. 2021; 37(12): 1337–45. doi: 10.1080/09593985.2019.1698085 2.
Vachranukunkiet T, Esquenazi A. Pathophysiology of gait disturbance in neurologic disorders and clinical presentations. Phys Med Rehabil Clin N Am. 2013; 24(2): 233–46. doi: 10.1016/j.pmr.2012.11.010 3.
Krawetz P, Nance P. Gait analysis of spinal cord injured subjects: effects of injury level and spasticity. Arch Phys Med Rehabil. 1996; 77(7): 635–8. doi: 10.1016/s0003-9993(96)90000-3 4.
Moore S, Schurr K, Wales A, Moseley A, Herbert R. Observation and analysis of hemiplegic gait: swing phase. Aust J Physiother. 1993; 39(4): 271–8. doi: 10.1016/S0004-9514(14)60487-6 5.
Moseley A, Wales A, Herbert R, Schurr K, Moore S. Observation and analysis of hemiplegic gait: stance phase. Aust J Physiother. 1993; 39(4): 259–67. doi: 10.1016/S0004-9514(14)60486-4 6.
Park J, Kim TH. The effects of balance and gait function on quality of life of stroke patients. NeuroRehabilitation. 2019; 44(1): 37–41. doi: 10.3233/NRE-182467 7.
An S, Lee Y, Shin H, Lee G. Gait velocity and walking distance to predict community walking after stroke. Nurs Health Sci. 2015; 17(4): 533–8. doi: 10.1111/nhs.12234 8.
Jenkin J, Parkinson S, Jacques A, Kho L, Hill K. Berg Balance Scales score as a predictor of independent walking at discharge among adult stroke survivors. Physiother Can. 2021; 73(3): 252–6. doi: 10.3138/ptc-2019-0090 9.
Van Silfhout L, Hosman AJF, Bartels RHMA, Edwards MJR, Abel R, Curt A, et al. Ten meters walking speed in spinal cord–injured patients: does speed predict who walks and who rolls? Neurorehabil Neural Repair. 2017; 31(9): 842–50. doi: 10.1177/1545968317723751 10.
Dobkin BH. Rehabilitation after stroke. N Engl J Med. 2005; 352(16): 1677–84. 10.1056/NEJMcp043511 11.
Teasell R, Salbach NM, Foley N, Mountain A, Cameron JI, Jong A de, et al. Canadian Stroke Best Practice Recommendations: rehabilitation, recovery, and community participation following stroke. Part one: rehabilitation and recovery following stroke; 6th edition update 2019. Int J Stroke Off J Int Stroke Soc. 2020; 15(7): 763–88. doi: 10.1177/1747493019897843 12.
Ali A, Tabassum D, Baig SS, Moyle B, Redgrave J, Nichols S, et al. Effect of exercise interventions on health-related quality of life after stroke and transient ischemic attack: a systematic review and meta-analysis. Stroke. 2021; 52(7): 2445–55. doi: 10.1161/STROKEAHA.120.032979 13.
Abdullahi A, Truijen S, Umar NA, Useh U, Egwuonwu VA, Van Criekinge T, et al. Effects of lower limb constraint induced movement therapy in people with stroke: a systematic Review and Meta-Analysis. Front Neurol. 2021; 12: 638904. doi: 10.3389/fneur.2021.638904 14.
Mehrholz J, Thomas S, Elsner B. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2017; 8(8): CD002840.2017. doi: 10.1002/14651858.CD002840.pub4 15.
Hornby TG, Reisman DS, Ward IG, Scheets PL, Miller A, Haddad D, et al. Clinical practice guideline to improve locomotor function following chronic stroke, incomplete spinal cord injury, and brain injury. J Neurol Phys Ther. 2020; 44(1): 49–100. doi: 10.1097/NPT.0000000000000303 16.
Chang WH, Kim MS, Huh JP, Lee PKW, Kim YH. Effects of robot-assisted gait training on cardiopulmonary fitness in subacute stroke patients: A randomized controlled study. Neurorehabil Neural Repair. 2012; 26(4): 318–24. doi: 10.1177/1545968311408916 17.
Capecci M, Pournajaf S, Galafate D, Sale P, Le Pera D, Goffredo M, et al. Clinical effects of robot-assisted gait training and treadmill training for Parkinson’s disease. A randomized controlled trial. Ann Phys Rehabil Med. 2019; 62(5): 303–12. doi: 10.1016/j.rehab.2019.06.016 18.
Cao N, Packel A, Marcy E, Sprik K, Harold E, Xiao R, et al. Implementing robotic-assisted gait training in acute inpatient stroke rehabilitation: a quality improvement initiative. J Int Soc Phys Rehabil Med. 2021; 4(4): 168–73. doi: 10.4103/jisprm-000130 19.
Kwakkel G, Stinear C, Essers B, Munoz-Novoa M, Branscheidt M, Cabanas-Valdés R, et al. Motor rehabilitation after stroke: European Stroke Organisation (ESO) consensus-based definition and guiding framework. Eur Stroke J. 2023; 8(4): 880–94. doi: 10.1177/23969873231191304 20.
Choi S, Kim SW, Jeon HR, Lee JS, Kim DY, Lee JW. Feasibility of robot-assisted gait training with an end-effector type device for various neurologic disorders. Brain NeuroRehabilitation. 2020; 13(1): e6. doi: 10.12786/bn.2020.13.e6 21.
Bates BE, Xie D, Kwong PL, Kurichi JE, Cowper Ripley D, Davenport C, et al. Development and validation of prognostic indices for recovery of physical functioning following stroke: part 1. PM R. 2015; 7(7): 685–98. doi: 10.1016/j.pmrj.2015.01.011 22.
Hsueh IP. Comparison of the psychometric characteristics of the functional independence measure, 5 item Barthel index, and 10 item Barthel index in patients with stroke. J Neurol Neurosurg Psychiatry. 2002; 73(2): 188–90. doi: 10.1136/jnnp.73.2.188 23.
Keith RA, Granger CV, Hamilton BB, Sherwin FS. The functional independence measure: a new tool for rehabilitation. Adv Clin Rehabil. 1987; 1: 6–18. 24.
Mahoney FI, Barthel DW. Functional evaluation: the Barthel Index. Md State Med J. 1965; 14: 61–5. 25.
Wales K, Lannin NA, Clemson L, Cameron ID. Measuring functional ability in hospitalized older adults: a validation study. Disabil Rehabil. 2018; 40(16): 1972–8. doi: 10.1080/09638288.2017.1323021 26.
Shah S, Vanclay F, Cooper B. Improving the sensitivity of the Barthel Index for stroke rehabilitation. J Clin Epidemiol. 1989; 42(8): 703–9. doi: 10.1016/0895-4356(89)90065-6 27.
Brazier J, Jones N, Kind P. Testing the validity of the Euroqol and comparing it with the SF-36 health survey questionnaire. Qual Life Res. 1993; 2(3): 169–80. doi: 10.1007/BF00435221 28.
Herdman M, Badia X, Berra S. El EuroQol-5D: una alternativa sencilla para la medición de la calidad de vida relacionada con la salud en atención primaria. Aten Primaria. 2001; 28(6): 425. doi: 10.1016/s0212-6567(01)70406-4 29.
Duncan PW, Bode RK, Lai SM, Perera S. Rasch analysis of a new stroke-specific outcome scale: the Stroke Impact Scale. Arch Phys Med Rehabil. 2003; 84(7): 950–63. doi: 10.1016/s0003-9993(03)00035-2 30.
Cheng DK, Nelson M, Brooks D, Salbach NM. Validation of stroke-specific protocols for the 10-meter walk test and 6-minute walk test conducted using 15-meter and 30-meter walkways. Top Stroke Rehabil. 2020; 27(4): 251–61. doi: 10.1080/10749357.2019.1691815 31.
Fulk GD, He Y. Minimal clinically important difference of the 6-Minute Walk Test in people with stroke. J Neurol Phys Ther. 2018; 42(4): 235–40. doi: 10.1097/NPT.0000000000000236 32.
Mathias S, Nayak US, Isaacs B. Balance in elderly patients: the «get-up and go» test. Arch Phys Med Rehabil. 1986; 67(6): 387–9. 33.
Foreman KB, Addison O, Kim HS, Dibble LE. Testing balance and fall risk in persons with Parkinson disease, an argument for ecologically valid testing. Parkinsonism Relat Disord. 2011; 17(3): 166–71. doi: 10.1016/j.parkreldis.2010.12.007 34.
Baronchelli F, Zucchella C, Serrao M, Intiso D, Bartolo M. The Effect of robotic assisted gait Training with Lokomat® on balance control after stroke: systematic review and meta-analysis. Front Neurol. 2021; 12: 661815. doi: 10.3389/fneur.2021.661815 35.
Calabrò RS, Sorrentino G, Cassio A, Mazzoli D, Andrenelli E, Bizzarini E, et al. Robotic-assisted gait rehabilitation following stroke: a systematic review of current guidelines and practical clinical recommendations. Eur J Phys Rehabil Med. 2021; 57(3): 460–71. doi: 10.23736/S1973-9087.21.06887-8 36.
Bruni MF, Melegari C, De Cola MC, Bramanti A, Bramanti P, Calabrò RS. What does best evidence tell us about robotic gait rehabilitation in stroke patients: a systematic review and meta-analysis. J Clin Neurosci. 2018; 48: 11–7. doi: 10.1016/j.jocn.2017.10.048 37.
Aprile I, Iacovelli C, Goffredo M, Cruciani A, Galli M, Simbolotti C, et al. Efficacy of end-effector robot-assisted gait training in subacute stroke patients: clinical and gait outcomes from a pilot bi-centre study. NeuroRehabilitation. 2019; 45(2): 201–12. doi: 10.3233/NRE-192778 38.
Shin JC, Jeon HR, Kim D, Cho SI, Min WK, Lee JS, et al. Effects on the motor function, proprioception, balance, and gait ability of the end-effector robot-assisted gait training for spinal cord injury patients. Brain Sci. 2021; 11(10): 1281. doi: 10.3390/brainsci11101281 39.
Hoekstra F, van Nunen MPM, Gerrits KHL, Stolwijk-Swüste JM, Crins MHP, Janssen TWJ. Effect of robotic gait training on cardiorespiratory system in incomplete spinal cord injury. J Rehabil Res Dev. 2013; 50(10): 1411–22. doi: 10.1682/JRRD.2012.10.0186 40.
Pang MYC, Charlesworth SA, Lau RWK, Chung RCK. Using aerobic exercise to improve health outcomes and quality of life in stroke: evidence-based exercise prescription recommendations. Cerebrovasc Dis. 2013; 35(1): 7–22. doi: 10.1159/000346075 41.
Penna LG, Pinheiro JP, Ramalho SHR, Ribeiro CF. Effects of aerobic physical exercise on neuroplasticity after stroke: systematic review. Arq Neuropsiquiatr. 2021; 79(9): 832–43. doi: 10.1590/0004-282X-ANP-2020-0551 42.
Mazzoleni S, Focacci A, Franceschini M, Waldner A, Spagnuolo C, Battini E, et al. Robot-assisted end-effector-based gait training in chronic stroke patients: A multicentric uncontrolled observational retrospective clinical study. NeuroRehabilitation Int Interdiscip J. 2017; 40(4): 483–92. doi: 10.3233/NRE-161435 43.
Geroin C, Picelli A, Munari D, Waldner A, Tomelleri C, Smania N. Combined transcranial direct current stimulation and robot-assisted gait training in patients with chronic stroke: a preliminary comparison. Clin Rehabil. 2011; 25(6): 537–48. doi: 10.1177/0269215510389497 44.
Yu D, Yang Z, Lei L, Chaoming N, Ming W. Robot‐assisted gait training plan for patients in poststroke recovery period: a single blind randomized controlled trial. Biomed Res Int. 2021; 2021: 5820304. doi: 10.1155/2021/5820304 45.
De Araújo AVL, Neiva JFDO, Monteiro CBDM, Magalhães FH. Efficacy of virtual reality rehabilitation after spinal cord injury: a systematic review. Biomed Res Int. 2019; 2019: 7106951. doi: 10.1155/2019/7106951 46.
Domínguez Téllez P, Moral Muñoz JA, Casado Fernández E, Salazar Couso A, Lucena Antón D. Efectos de la realidad virtual sobre el equilibrio y la marcha en el ictus: revisión sistemática y metaanálisis. Rev Neurol. 2019; 69(06): 223. doi: 10.33588/rn.6906.2019063 47.
Ada L, Dean CM, Vargas J, Ennis S. Mechanically assisted walking with body weight support results in more independent walking than assisted overground walking in non-ambulatory patients early after stroke: a systematic review. J Physiother. 2010; 56(3): 153–61. doi: 10.1016/s1836-9553(10)70020-5 48.
Mehrholz J, Thomas S, Kugler J, Pohl M, Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2020; 10(10): CD006185. doi: 10.1002/14651858.CD006185.pub5 49.
Mehrholz J, Pohl M. Electromechanical-assisted gait training after stroke: a systematic review comparing end-effector and exoskeleton devices. J Rehabil Med. 2012; 44(3): 193–9. doi: 10.2340/16501977-0943 50.
Guadagnoli MA, Lee TD. Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J Mot Behav. 2004; 36(2): 212–24. doi: 10.3200/JMBR.36.2.212-224 51.
Israel JF, Campbell DD, Kahn JH, Hornby TG. Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Phys Ther. 2006; 86(11): 1466–78. doi: 10.2522/ptj.20050266 52.
Pin-Barre C, Constans A, Brisswalter J, Pellegrino C, Laurin J. Effects of high- versus moderate-intensity training on neuroplasticity and functional recovery after focal ischemia. Stroke. 2017; 48(10): 2855–64. doi: 10.1161/STROKEAHA.117.017962 53.
Lee J, Kim DY, Lee SH, Kim JH, Kim DY, Lim KB, et al. End-effector lower limb robot-assisted gait training effects in subacute stroke patients: a randomized controlled pilot trial. Medicine (Baltimore). 2023; 102(42): e35568. doi: 10.1097/MD.0000000000035568 54.
Shin JC, Jeon HR, Kim D, Min WK, Lee JS, Cho SI, et al. Effects of end-effector robot-assisted gait training on gait ability, muscle strength, and balance in patients with spinal cord injury. NeuroRehabilitation. 2023; 53(3): 335–46. doi: 10.3233/NRE-230085
This is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
|
![]() ![]() ![]() ![]() |