Advances in Rehabilitation
facebook
twitter
eISSN: 1734-4948
ISSN: 0860-6161
Advances in Rehabilitation
Current issue Archive Manuscripts accepted About the journal Editorial board Reviewers Abstracting and indexing Contact Instructions for authors Publication charge Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
4/2025
vol. 39
 
Share:
Share:
Original paper

Validation of LEXO® end-effector robot-assisted training in patients with gait deficits after central nervous system diseases: a descriptive cross-sectional study

Ángel Sánchez-Cabeza
1
,
María-del-Rocío Hidalgo-Mas
2
,
Ana-María Casado-Fernández
3
,
Juan-Esteban Fernández-Torrego
3
,
Alfredo Lerín-Calvo
4, 5, 6

  1. University Rey Juan Carlos, Departament of Physiotherapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, 28933, Alcorcón, Spain
  2. University of East Anglia, United Kingdom
  3. Neuron clinic, 28293, Alcorcón, Madrid, Spain
  4. Grupo de Investigación de Neurociencias Aplicadas a la Rehabilitación (GINARE), 28293, Alcorcón, Madrid, Spain
  5. Department of Physiotherapy, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023, Aravaca, Madrid, Spain
  6. Department of Physiotherapy, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023, Aravaca, Madrid, Spain
Adv Rehab. 2025; 39(4): 1-15.
Online publish date: 2025/06/17
Article file
Get citation
 
PlumX metrics:
 
1. de Rooij IJM, van de Port IGL, van der Heijden LLM, Meijer JWG, Visser-Meily JMA. Perceived barriers and facilitators for gait-related participation in people after stroke: From a patients’ perspective. Physiother Theory Pract. 2021; 37(12): 1337–45. doi: 10.1080/09593985.2019.1698085
2. Vachranukunkiet T, Esquenazi A. Pathophysiology of gait disturbance in neurologic disorders and clinical presentations. Phys Med Rehabil Clin N Am. 2013; 24(2): 233–46. doi: 10.1016/j.pmr.2012.11.010
3. Krawetz P, Nance P. Gait analysis of spinal cord injured subjects: effects of injury level and spasticity. Arch Phys Med Rehabil. 1996; 77(7): 635–8. doi: 10.1016/s0003-9993(96)90000-3
4. Moore S, Schurr K, Wales A, Moseley A, Herbert R. Observation and analysis of hemiplegic gait: swing phase. Aust J Physiother. 1993; 39(4): 271–8. doi: 10.1016/S0004-9514(14)60487-6
5. Moseley A, Wales A, Herbert R, Schurr K, Moore S. Observation and analysis of hemiplegic gait: stance phase. Aust J Physiother. 1993; 39(4): 259–67. doi: 10.1016/S0004-9514(14)60486-4
6. Park J, Kim TH. The effects of balance and gait function on quality of life of stroke patients. NeuroRehabilitation. 2019; 44(1): 37–41. doi: 10.3233/NRE-182467
7. An S, Lee Y, Shin H, Lee G. Gait velocity and walking distance to predict community walking after stroke. Nurs Health Sci. 2015; 17(4): 533–8. doi: 10.1111/nhs.12234
8. Jenkin J, Parkinson S, Jacques A, Kho L, Hill K. Berg Balance Scales score as a predictor of independent walking at discharge among adult stroke survivors. Physiother Can. 2021; 73(3): 252–6. doi: 10.3138/ptc-2019-0090
9. Van Silfhout L, Hosman AJF, Bartels RHMA, Edwards MJR, Abel R, Curt A, et al. Ten meters walking speed in spinal cord–injured patients: does speed predict who walks and who rolls? Neurorehabil Neural Repair. 2017; 31(9): 842–50. doi: 10.1177/1545968317723751
10. Dobkin BH. Rehabilitation after stroke. N Engl J Med. 2005; 352(16): 1677–84. 10.1056/NEJMcp043511
11. Teasell R, Salbach NM, Foley N, Mountain A, Cameron JI, Jong A de, et al. Canadian Stroke Best Practice Recommendations: rehabilitation, recovery, and community participation following stroke. Part one: rehabilitation and recovery following stroke; 6th edition update 2019. Int J Stroke Off J Int Stroke Soc. 2020; 15(7): 763–88. doi: 10.1177/1747493019897843
12. Ali A, Tabassum D, Baig SS, Moyle B, Redgrave J, Nichols S, et al. Effect of exercise interventions on health-related quality of life after stroke and transient ischemic attack: a systematic review and meta-analysis. Stroke. 2021; 52(7): 2445–55. doi: 10.1161/STROKEAHA.120.032979
13. Abdullahi A, Truijen S, Umar NA, Useh U, Egwuonwu VA, Van Criekinge T, et al. Effects of lower limb constraint induced movement therapy in people with stroke: a systematic Review and Meta-Analysis. Front Neurol. 2021; 12: 638904. doi: 10.3389/fneur.2021.638904
14. Mehrholz J, Thomas S, Elsner B. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2017; 8(8): CD002840.2017. doi: 10.1002/14651858.CD002840.pub4
15. Hornby TG, Reisman DS, Ward IG, Scheets PL, Miller A, Haddad D, et al. Clinical practice guideline to improve locomotor function following chronic stroke, incomplete spinal cord injury, and brain injury. J Neurol Phys Ther. 2020; 44(1): 49–100. doi: 10.1097/NPT.0000000000000303
16. Chang WH, Kim MS, Huh JP, Lee PKW, Kim YH. Effects of robot-assisted gait training on cardiopulmonary fitness in subacute stroke patients: A randomized controlled study. Neurorehabil Neural Repair. 2012; 26(4): 318–24. doi: 10.1177/1545968311408916
17. Capecci M, Pournajaf S, Galafate D, Sale P, Le Pera D, Goffredo M, et al. Clinical effects of robot-assisted gait training and treadmill training for Parkinson’s disease. A randomized controlled trial. Ann Phys Rehabil Med. 2019; 62(5): 303–12. doi: 10.1016/j.rehab.2019.06.016
18. Cao N, Packel A, Marcy E, Sprik K, Harold E, Xiao R, et al. Implementing robotic-assisted gait training in acute inpatient stroke rehabilitation: a quality improvement initiative. J Int Soc Phys Rehabil Med. 2021; 4(4): 168–73. doi: 10.4103/jisprm-000130
19. Kwakkel G, Stinear C, Essers B, Munoz-Novoa M, Branscheidt M, Cabanas-Valdés R, et al. Motor rehabilitation after stroke: European Stroke Organisation (ESO) consensus-based definition and guiding framework. Eur Stroke J. 2023; 8(4): 880–94. doi: 10.1177/23969873231191304
20. Choi S, Kim SW, Jeon HR, Lee JS, Kim DY, Lee JW. Feasibility of robot-assisted gait training with an end-effector type device for various neurologic disorders. Brain NeuroRehabilitation. 2020; 13(1): e6. doi: 10.12786/bn.2020.13.e6
21. Bates BE, Xie D, Kwong PL, Kurichi JE, Cowper Ripley D, Davenport C, et al. Development and validation of prognostic indices for recovery of physical functioning following stroke: part 1. PM R. 2015; 7(7): 685–98. doi: 10.1016/j.pmrj.2015.01.011
22. Hsueh IP. Comparison of the psychometric characteristics of the functional independence measure, 5 item Barthel index, and 10 item Barthel index in patients with stroke. J Neurol Neurosurg Psychiatry. 2002; 73(2): 188–90. doi: 10.1136/jnnp.73.2.188
23. Keith RA, Granger CV, Hamilton BB, Sherwin FS. The functional independence measure: a new tool for rehabilitation. Adv Clin Rehabil. 1987; 1: 6–18.
24. Mahoney FI, Barthel DW. Functional evaluation: the Barthel Index. Md State Med J. 1965; 14: 61–5.
25. Wales K, Lannin NA, Clemson L, Cameron ID. Measuring functional ability in hospitalized older adults: a validation study. Disabil Rehabil. 2018; 40(16): 1972–8. doi: 10.1080/09638288.2017.1323021
26. Shah S, Vanclay F, Cooper B. Improving the sensitivity of the Barthel Index for stroke rehabilitation. J Clin Epidemiol. 1989; 42(8): 703–9. doi: 10.1016/0895-4356(89)90065-6
27. Brazier J, Jones N, Kind P. Testing the validity of the Euroqol and comparing it with the SF-36 health survey questionnaire. Qual Life Res. 1993; 2(3): 169–80. doi: 10.1007/BF00435221
28. Herdman M, Badia X, Berra S. El EuroQol-5D: una alternativa sencilla para la medición de la calidad de vida relacionada con la salud en atención primaria. Aten Primaria. 2001; 28(6): 425. doi: 10.1016/s0212-6567(01)70406-4
29. Duncan PW, Bode RK, Lai SM, Perera S. Rasch analysis of a new stroke-specific outcome scale: the Stroke Impact Scale. Arch Phys Med Rehabil. 2003; 84(7): 950–63. doi: 10.1016/s0003-9993(03)00035-2
30. Cheng DK, Nelson M, Brooks D, Salbach NM. Validation of stroke-specific protocols for the 10-meter walk test and 6-minute walk test conducted using 15-meter and 30-meter walkways. Top Stroke Rehabil. 2020; 27(4): 251–61. doi: 10.1080/10749357.2019.1691815
31. Fulk GD, He Y. Minimal clinically important difference of the 6-Minute Walk Test in people with stroke. J Neurol Phys Ther. 2018; 42(4): 235–40. doi: 10.1097/NPT.0000000000000236
32. Mathias S, Nayak US, Isaacs B. Balance in elderly patients: the «get-up and go» test. Arch Phys Med Rehabil. 1986; 67(6): 387–9.
33. Foreman KB, Addison O, Kim HS, Dibble LE. Testing balance and fall risk in persons with Parkinson disease, an argument for ecologically valid testing. Parkinsonism Relat Disord. 2011; 17(3): 166–71. doi: 10.1016/j.parkreldis.2010.12.007
34. Baronchelli F, Zucchella C, Serrao M, Intiso D, Bartolo M. The Effect of robotic assisted gait Training with Lokomat® on balance control after stroke: systematic review and meta-analysis. Front Neurol. 2021; 12: 661815. doi: 10.3389/fneur.2021.661815
35. Calabrò RS, Sorrentino G, Cassio A, Mazzoli D, Andrenelli E, Bizzarini E, et al. Robotic-assisted gait rehabilitation following stroke: a systematic review of current guidelines and practical clinical recommendations. Eur J Phys Rehabil Med. 2021; 57(3): 460–71. doi: 10.23736/S1973-9087.21.06887-8
36. Bruni MF, Melegari C, De Cola MC, Bramanti A, Bramanti P, Calabrò RS. What does best evidence tell us about robotic gait rehabilitation in stroke patients: a systematic review and meta-analysis. J Clin Neurosci. 2018; 48: 11–7. doi: 10.1016/j.jocn.2017.10.048
37. Aprile I, Iacovelli C, Goffredo M, Cruciani A, Galli M, Simbolotti C, et al. Efficacy of end-effector robot-assisted gait training in subacute stroke patients: clinical and gait outcomes from a pilot bi-centre study. NeuroRehabilitation. 2019; 45(2): 201–12. doi: 10.3233/NRE-192778
38. Shin JC, Jeon HR, Kim D, Cho SI, Min WK, Lee JS, et al. Effects on the motor function, proprioception, balance, and gait ability of the end-effector robot-assisted gait training for spinal cord injury patients. Brain Sci. 2021; 11(10): 1281. doi: 10.3390/brainsci11101281
39. Hoekstra F, van Nunen MPM, Gerrits KHL, Stolwijk-Swüste JM, Crins MHP, Janssen TWJ. Effect of robotic gait training on cardiorespiratory system in incomplete spinal cord injury. J Rehabil Res Dev. 2013; 50(10): 1411–22. doi: 10.1682/JRRD.2012.10.0186
40. Pang MYC, Charlesworth SA, Lau RWK, Chung RCK. Using aerobic exercise to improve health outcomes and quality of life in stroke: evidence-based exercise prescription recommendations. Cerebrovasc Dis. 2013; 35(1): 7–22. doi: 10.1159/000346075
41. Penna LG, Pinheiro JP, Ramalho SHR, Ribeiro CF. Effects of aerobic physical exercise on neuroplasticity after stroke: systematic review. Arq Neuropsiquiatr. 2021; 79(9): 832–43. doi: 10.1590/0004-282X-ANP-2020-0551
42. Mazzoleni S, Focacci A, Franceschini M, Waldner A, Spagnuolo C, Battini E, et al. Robot-assisted end-effector-based gait training in chronic stroke patients: A multicentric uncontrolled observational retrospective clinical study. NeuroRehabilitation Int Interdiscip J. 2017; 40(4): 483–92. doi: 10.3233/NRE-161435
43. Geroin C, Picelli A, Munari D, Waldner A, Tomelleri C, Smania N. Combined transcranial direct current stimulation and robot-assisted gait training in patients with chronic stroke: a preliminary comparison. Clin Rehabil. 2011; 25(6): 537–48. doi: 10.1177/0269215510389497
44. Yu D, Yang Z, Lei L, Chaoming N, Ming W. Robot‐assisted gait training plan for patients in poststroke recovery period: a single blind randomized controlled trial. Biomed Res Int. 2021; 2021: 5820304. doi: 10.1155/2021/5820304
45. De Araújo AVL, Neiva JFDO, Monteiro CBDM, Magalhães FH. Efficacy of virtual reality rehabilitation after spinal cord injury: a systematic review. Biomed Res Int. 2019; 2019: 7106951. doi: 10.1155/2019/7106951
46. Domínguez Téllez P, Moral Muñoz JA, Casado Fernández E, Salazar Couso A, Lucena Antón D. Efectos de la realidad virtual sobre el equilibrio y la marcha en el ictus: revisión sistemática y metaanálisis. Rev Neurol. 2019; 69(06): 223. doi: 10.33588/rn.6906.2019063
47. Ada L, Dean CM, Vargas J, Ennis S. Mechanically assisted walking with body weight support results in more independent walking than assisted overground walking in non-ambulatory patients early after stroke: a systematic review. J Physiother. 2010; 56(3): 153–61. doi: 10.1016/s1836-9553(10)70020-5
48. Mehrholz J, Thomas S, Kugler J, Pohl M, Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2020; 10(10): CD006185. doi: 10.1002/14651858.CD006185.pub5
49. Mehrholz J, Pohl M. Electromechanical-assisted gait training after stroke: a systematic review comparing end-effector and exoskeleton devices. J Rehabil Med. 2012; 44(3): 193–9. doi: 10.2340/16501977-0943
50. Guadagnoli MA, Lee TD. Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J Mot Behav. 2004; 36(2): 212–24. doi: 10.3200/JMBR.36.2.212-224
51. Israel JF, Campbell DD, Kahn JH, Hornby TG. Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Phys Ther. 2006; 86(11): 1466–78. doi: 10.2522/ptj.20050266
52. Pin-Barre C, Constans A, Brisswalter J, Pellegrino C, Laurin J. Effects of high- versus moderate-intensity training on neuroplasticity and functional recovery after focal ischemia. Stroke. 2017; 48(10): 2855–64. doi: 10.1161/STROKEAHA.117.017962
53. Lee J, Kim DY, Lee SH, Kim JH, Kim DY, Lim KB, et al. End-effector lower limb robot-assisted gait training effects in subacute stroke patients: a randomized controlled pilot trial. Medicine (Baltimore). 2023; 102(42): e35568. doi: 10.1097/MD.0000000000035568
54. Shin JC, Jeon HR, Kim D, Min WK, Lee JS, Cho SI, et al. Effects of end-effector robot-assisted gait training on gait ability, muscle strength, and balance in patients with spinal cord injury. NeuroRehabilitation. 2023; 53(3): 335–46. doi: 10.3233/NRE-230085
This is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.










Quick links
© 2025 Termedia Sp. z o.o.
Developed by Bentus.